
Abstract-The paper presents a method and apparatus for 
shaping the electrical waveform delivered by an external 
defibrillator based on an electrical parameter measured during 
delivery of the waveform. Software and hardware co-design 
allow embedding anyone waveform and realizing it 
independently from transthoracic electrical impedance changes 
during shock time. 
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I. INTRODUCTION 

 
Despite years of intensive research, there is no suitable 

theory for mechanism of defibrillation that explains all the 
phenomena observed [1]. Moreover, there is no physiological 
theory that explains the mechanism of action of the bi-
directional wave, nor does any theory predict the optimum 
amplitude and time dimensions for the second inverted 
wave [2].  

Three key factors: (a) excitation propagation velocity, 
(b) refractory period, and (c) excitation path length – are 
sustained fibrillation. Propagation velocity is an inherent, 
temperature-dependent property of cardiac tissue. The 
refractory period can be prolonged by a strong cathodal shock 
applied to excited cells. An anodal shock reduces cell 
excitability. The excitation path length pertains to the size of 
the fibrillating myocardium, and both anodal and cathodal 
shocks can alter the path length [2]. 
 On the one hand, an external defibrillator design is based 
on experimental data for optimum current waveform: 
strength-duration curve, delivered energy and charge, etc., 
and the variety of these data is obtained without taking into 
account transthoracic electrical impedance changes during 
shock time. 

On the other hand, there are methods and apparatuses, 

which allow measuring patient electrical parameters and 
continual waveform shape reforming for transchest resistance 
dynamics. For example, it is some recent technical 
decisions [3-5]. 

The question of what current waveform should be 
selected as optimum, which independent from transchest 
resistance dynamics needs further elucidation. Two 
opportunities: forming anyone waveform, and providing this 
one independently from tranchest resistance dynamics – are 
needed for experiments. 

The paper presents a method and apparatus for shaping 
the electrical waveform delivered by an external defibrillator 
based on an electrical parameter measured during delivery of 
the waveform. Software and hardware co-design allow 
embedding anyone waveform and realizing it independent 
from transthoracic electrical impedance changes during shock 
time. 

Additional such possibilities may be useful for 
development a new electrotherapy methods, as 
electrochemotherapy for cancer treatment [6]. 

 
II. METHODOLOGY 

 
The both method and apparatus are based on developed 

high voltage delivery unit [7]. Fig.1 is an illustration of it. 
The power cell block (PCB) delivers of high voltage to 

the patient through low pass filter. PCB consists of energy 
storage capacitors and insulated-gate bipolar transistors under 
pulse-width modulation (no more than 50 kHz) with low-
stress switching for efficiency [8]. 

Voltage sensor is measuring PCB voltage output and 
current sensor is measuring PCB current output. This data 
transfer to input of the PCB control circuit through scaling 
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Fig.1. High voltage delivery unit. 
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transducers.  The value of scaling transducers depends upon 
the setting defibrillation energy. 

The setting power waveform stores into power etalon 
waveform generator (PEWG). This etalon may be anyone. Its 
power waveform is embedded by software technology. 
Besides the integral from power waveform etalon on shock 
time is setting defibrillation energy. 

The PCB control circuit is real-time driving the process of 
high voltage delivery using real-time comparison of PEWG 
output and scaling transducers output, that is control 
feedback. 

The high voltage delivery unit was simulated by PSpice. 
Than it was realized by printed-circuit board technology.  
 

III. RESULTS 
 
 Fig.2-5 are illustrations of simulation results for high 
voltage delivery to patient. The simulation model includes the 
skin breakdown with 100V threshold. It is example of 
asymmetric biphasic waveform etalon, which now is 
optimum for external defibrillation [2]. The both duration the 
first and second phases are 4 ms at the half-level amplitude 
maximum of each phase. The amplitude of second (inverted) 
phase is half of first phase, and pulse tilt is 30 %. 
 Fig.2-4 illustrate the voltage-time curves for 200 J 
delivered energy and 150, 50, 25 Ω load resistance, and Fig.5 
illustrates that for 5 J, 25 Ω. The skin breakdown peak is seen 
in Fig.5. This simulation results correspond to the worst 
combination for electrical parameters of the circuit 
components.  

The experimental results are presented in Fig.6. 

 
IV. CONCLUSION 

 
 There are both a method and apparatus for shaping the 
electrical waveform delivered by an external defibrillator 
based on the PCB output measured and control feedback. 
Software and hardware co-design allow embedding anyone 
waveform and realizing it independently from transthoracic 
electrical impedance changes during shock time. 
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Fig.2. Voltage-time curve for 200 J delivered energy and 150 Ω load resistance. 



Fig.3. Voltage-time curve for 200 J delivered energy and 50 Ω load resistance. 

Fig.4. Voltage-time curve for 200 J delivered energy and 25 Ω load resistance. 
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Fig.5. Voltage-time curve for 5 J delivered energy and 25 Ω load resistance. 

Fig.6. Experimental voltage-time curve for 200 J delivered energy 
and 150 Ω load resistance. 
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